\qquad
\qquad

Extra Practice

BLM 1.2

1.2 Operations With Rational Numbers

1. Insert brackets to make each equation true.
a) $\frac{2}{3}+4 \times \frac{1}{2}+\frac{1}{4} \div 3=\frac{5}{3}$
b) $0.5^{2}-0.1 \times 8 \div 2=0.6$
c) $-2 \times 18.5-6.3 \div 4=-6.1$
2. Evaluate when $a=3, b=6$, and $c=\frac{1}{2}$.

Use estimation to help simplify your calculations. Show your work.
i) $a \times(b+c)$ \qquad
ii) $b^{2}+a$ \qquad
iii) $a \times b \times c$ \qquad
iv) $b \div c \times a$ \qquad
v) $(b \times c)^{3}+a^{2}$ \qquad
3. Evaluate when $x=0.5, y=7.2$, and $z=-1.8$. Use estimation to help simplify your calculations. Show your work.
a) $y^{2}-z$
b) $x^{2}+y^{2}+z^{3}$ \qquad
c) $y \div x+z$ \qquad
d) $x \bullet y \bullet z$ \qquad
e) $x \bullet(y-z)$ \qquad
4. Marion and her 5 friends bought 3 pizzas.

Each person ate $\frac{3}{8}$ of a pizza. How much pizza is left?
5. During their vacation, the Robichaud family spent $\frac{1}{4}$ of their money on gas, $\frac{3}{5}$ of their money on food and hotels, and $\frac{1}{8}$ of their money on tourist attractions.
a) What fraction of their money did they spend altogether?
b) If they had $\$ 1840$ before their vacation started, how much money did they spend on gas, food, hotels, and tourist attractions? How much is left over?
6. How many hours are there in $3 \frac{1}{4}$ weeks?
7. The temperature in Truro, on average, decreased by $1.3^{\circ} \mathrm{C} / \mathrm{h}$ during a night.
a) How much did the temperature drop from 1:00 А.м. to 6:00 А.м.?
b) If the temperature was $2^{\circ} \mathrm{C}$ at 1:00 A.M., what is the temperature at 6:00 А.м.?
\qquad
\qquad
8. Which statements are always true, sometimes true, or always false? Give examples to prove your answers.
a) If you subtract a negative rational number from another negative rational number, the result is always less than zero.
\qquad
\qquad
b) The sum of two natural numbers is greater than each of the two numbers.
\qquad
\qquad
c) When you subtract a rational number from another rational number, you get an integer.
\qquad
\qquad
d) The square of a rational number that is not zero is negative.
\qquad
\qquad
e) The product of two negative rational numbers is greater than each of the two original numbers.
\qquad
\qquad
f) The product of two rational numbers is zero.
\qquad
\qquad

