~Mr Mac's Math Notes~ Laws of Exponents

There is a set of rules for evaluating expressions involving integral exponents. These are knows as exponent laws. There are 5 laws.

1. Product of Powers: $a^{m} \times a^{n}=a^{m+n}$

What this means is...if you are multiplying powers with the same base, just leave the base the same and add the exponents.

Example: $\quad 3^{2} \times 3^{4}=3^{6}$
2. Quotient of Powers: $a^{m} \div a^{n}=a^{m-n}$

What this means is...if you are dividing powers with the same base, just leave the base the same and subtract the exponents.

Example: $\quad 3^{8} \div 3^{2}=3^{6}$
3. Power of a Power: $\quad\left(a^{m}\right)^{n}=a^{m \times n}$

What this means is...if you are raising a power to another power, just leave the base the same and multiply the exponents.

Example: $\quad\left(3^{4}\right)^{2}=3^{8}$
4. Power of a Product: $(a b)^{m}=a^{m} b^{m}$

What this means is...if you are raising a multiplication statement (a product) to a power, you can raise each base in the statement to the power individually.

Example: $\quad(3 \times 4)^{3}=3^{3} \times 4^{3}$
5. Power of a Quotient: $\quad\left(\frac{a}{b}\right)^{m}=\frac{a^{m}}{b^{m}}$

What this means is...if you are raising a fraction (a quotient or division problem) to a power, you can raise each base in the statement to the power individually.

Example: $\quad\left(\frac{2}{3}\right)^{3}=\frac{2^{3}}{3^{3}}$

